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Summary. The Additive Main effects and Multiplicative 
Interaction (AMMI) statistical model has been demon- 
strated effective for understanding genotype-environ- 
ment interactions in yields, estimating yields more accu- 
rately, selecting superior genotypes more reliably, and 
allowing more flexible and efficient experimental designs. 
However, AMMI had required data for every genotype 
and environment combination or treatment; i.e., missing 
data were inadmissible. The present paper addresses the 
problem. The Expectation-Maximization (EM) al- 
gorithm is implemented for fitting AMMI depite missing 
data. This missing-data version of AMMI is here termed 
"EM-AMMI". EM-AMMI is used to quantify the direct 
and indirect information in a yield trial, providing theo- 
retical insight into the gain in accuracy observed and into 
the process of imputing missing data. For a given treat- 
ment, the direct yield data are the replicates of that treat- 
ment, and the indirect data are all the other yield data in 
the trial. EM-AMMI is used to inpute missing data for a 
New York soybean yield trial. Important applications 
arise from both unintentional and intentional missing 
data. Empirical measurements demonstrate good predic- 
tive success, and statistical theory attributes this success 
to the Stein effect. 

Key words: AMMI - Missing data - Prediction - Soy- 
bean - Yield trials 

Introduction 

Previous studies have shown the Additive Main effects 
and Multiplicative Interaction (AMMI) statistical model 

* This research was supported by the Rhizobotany Project of 
the USDA-ARS 

to be useful for analyzing yield trial data (Kempton 1984; 
Gauch 1988; Zobel et al. 1988; Gauch and Zobel 1988, 
1989). AMMI combines the usual additive analysis of 
variance (ANOVA) with principal components analysis 
(PCA) of the interaction, i.e., of the ANOVA's residual. 
Hence, AMMI models both the main effects and the in- 
teraction. It serves research purposes of understanding 
genotype-environment (GE) interaction, estimating 
yields more accurately, selecting superior genotypes more 
reliably, and allowing more flexible and efficient experi- 
mental designs. A major practical limitation to date, how- 
ever, has been a requirement of no missing cells. Data for 
every genotype and evironment combination or treat- 
ment have been necessary. 

This paper has two purposes. (1) It implements the 
Expectation-Maximization (EM) algorithm for imputing 
missing cells, thereby fitting the AMMI model despite 
missing cells. This missing-data version of AMMI is here 
denoted EM-AMMI. Missing cells may originate inten- 
tionally or accidentally, and both cases present important 
applications for EM-AMMI. (2) It examines theoretical 
implications regarding the direct and indirect informa- 
tion contained in yield data, For a given treatment, the 
direct yield data are the replicates of that treatment, and 
the indirect data are all the other yield data in the trial. 
The effectiveness of EM-AMMI for imputing missing 
data depends upon it being a reasonably realistic model, 
and more specifically to its modelling the GE interaction 
in addition to the main effects, thereby allowing the Stein 
effect to occur. Results are presented for a New York 
soybean yield trial. 

Preliminary considerations 

Several definitions, distinctions, and concepts merit pre- 
liminary clarification regarding direct and indirect infor- 
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mation, the AMMI and treatment means models, Stein 
effect, effective replications, prediction and postdiction, 
and data splitting. 

Consider yield data, Yg~r, for G genotypes, E environ- 
ments (site-year combinations), and R replications, to- 
talling GER observations. Each genotype and environ- 
ment combination will be termed a treatment. Now 
consider the objective of estimating the yield, Yoe, for a 
particular genotype g grown in a particular environment 
e. Both direct and indirect information is available for 
this estimation. 

The direct information in a yield trial is the R replica- 
tions for genotype g grown in environment e. According- 
ly, the yield, Yo~, may be estimated directly, by the treat- 
ment means or cell means model, as the average over 
these R replications (Searle 1987). The indirect informa- 
tion in a yield trial is the other GER-R observations, i.e., 
all the yield data except the R replications for genotype 
g grown in environment e. Thus, the direct and indirect 
information together constitute a complete partitioning 
of the total information containing all GER yield obser- 
vations. 

For the objective of estimating Y0~, these GER-R indi- 
rect observations are informative if and only if a theoret- 
ical or statistical model exists to interrelate the yield tri- 
al's data - however formal or informal, and complete or 
incomplete, that model may be. Without an encompass- 
ing model, the indirect information is irrelevant for esti- 
mating Yoe- For interrelating all of the yields, of particular 
interest here is the AMMI or biplot model, as follows: 

N 

n = l  

where Yoe is the yield of genotype g in environment e, 
# is the grand mean, 
c~ o are the genotype mean deviations (means 

minus grand mean), 
/~ are the environment mean deviations, 
N is the number of PCA axes retained in the 

model, 
2. is the singular value for PCA axis n, 
79. are the genotype eigenvector values for PCA 

axis n, 
(~en a r e  the environment eigenvector values for 

PCA axis n, and 
~ge are the residuals. 

If the experiment is replicated, the individual observa- 
tion Yg~r for replicate r may be modelled by adding to the 
above equation an error term %~ which equals Y0e~ minus 
the Y0~ mean. 

Ordinarily the number N of interaction principal 
components axes retained in the model is chosen with 
empirical considerations of F-tests of significance, predic- 
tive accuracy, agricultura ! interpretability of the associat- 
ed interaction PCA scores, and so on. Usually N is 0-3,  

and most frequently 1, producing a reduced model with 
a residual (which combines the discarded axis N + 1 and 
all higher axes). 

The salient feature of the AMMI model, relative to 
the present objective of estimating Yo~ with good predic- 
tive accuracy, is that each and every observation in the 
entire yield trial has some influence upon every model 
parameter and hence upon every model estimate of Yoe 
values. Consequently, the AMMI estimate of Y~. is influ- 
enced not only by the R replicates of genotype g grown 
in environment e, but also by all of the remaining GER-R 
other observations, Every observation has some influence 
upon every estimation. 

The treatment means or cell means model (Searle 
1987) is also considered here: 

Y0e = #~e -t- ~0er, 

where Yoe is estimated by the average over the R repli- 

cations (r=~l Yo,r)/R, 

#oe is the true mean for genotype g in environ- 
ment e, and 

eger is the errror or difference between replicate r 
and the true mean #ge" 

Note that this estimate of Yoe exploits only the direct 
information. 

The treatment means model is unbiased (Snedecor 
and Cochran 1980; Searle 1987), but the AMMI model 
cannot be expected to fit the data perfectly and hence is 
biased (Gauch 1990). The accuracy of a yield estimate 
depends upon both the variance of the estimate (or preci- 
sion) and the magnitude of bias. Sometimes the gain from 
reduction of variance resulting from use of a biased esti- 
mator more than offsets the inaccuracy due to bias. This 
is termed the "Stein effect" (Stein 1955; James and Stein 
1960; Berger 1985), which has been observed with AMMI 
(Gauch 1988; Gauch and Zobel 1988, 1989). 

The most straightforward strategy for increasing the 
accuracy of a Yg, yield estimate is to use the treatment 
means model with an increased number of replications R, 
since the standard error of a mean decreases with the 
square root of R. However, economic and other practical 
factors obviously limit this possibility, and furthermore 
the square-root dependency implies diminishing returns. 
Hence, alternative strategies are important, such as 
blocking and AMMI analysis. 

It is helpful to be able to express improvements in 
accuracy achieved by a variety of strategies in terms of a 
common currency. Effective replications can serve this 
role, expressing improvements in terms of the total num- 
ber of replications that would achieve the same standard 
error or accuracy. Likewise, free replications are the effec- 
tive replications in excess of the actual replications. 

For example, Snedecor and Cochran (1980, p. 265) 
compare a simple completely randomized (CR) experi- 
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mental design with a more sophisticated randomized 
block (RB) design, observing for a particular experiment 
that: "If a CR plan had been used, about six replications 
instead of five would have been needed to obtain the 
same standard error of a treatment mean as with RB." In 
other words, the RB experiment has five actual, physical 
replications, but the subsequent statistical analysis im- 
proves the accuracy of adjusted Yge estimates to a degree 
that would be equivalent from CR unadjusted means 
based upon six replications. There are five actual replica- 
tions, six effective replications and, hence, one free repli- 
cation. 

Note that blocking involves a special allocation of 
treatments to experimental units together with a special 
statistical analysis, which is a fundamentally different 
strategy than is increasing the number of replications. 
Nevertheless, the resulting increases in accuracy for both 
strategies can be expressed in the same terms of effective 
replications. In effect, this yield experiment supplies five 
replications and its statistical analysis supplies a free sixth 
replication. 

Likewise, AMMI can be used to obtain biased but 
more accurate Y~e estimates, and this improvement can 
also be expressed in terms of effective replications (Gauch 
1988, 1990; Gauch and Zobel 1988). By using effective 
replications as a common currency, numbers of "replica- 
tions" can be attributed both to a physical experiment 
and to a statistical or theoretical analysis. 

Blocking is a familiar, routine method for adjusting 
means in order to increase accuracy and effective replica- 
tions, whereas AMMI is a fairly novel approach. Howev- 
er, blocking and AMMI differ fundamentally in concept, 
and substantially in potential. Blocking is aimed at the 
error d f, whereas AMMI is aimed at the orthogonal 
treatment df. Blocking partitions the error df into 
sources for blocks and pure error. If the block sum of 
squares (SS) is relatively large, then the pure error SS may 
be decreased, reducing the pure error mean square (MS) 
and hence making F-tests more significant (presuming 
the usual case in which the concomitant decrease in the 
pure error d fhas  not had a larger deleterious effect upon 
significance). However, AMMI partitions the treatment 
d f in to  a pattern-rich model and a discarded, noise-rich 
residual (Gauch 1988; Gauch and Zobel 1988; Gauch 
1990). If much of the GE interaction SS is concentrated 
into relatively few df in the first one or few interaction 
PCA axes, then these sources may have a large MS, hence 
making F-tests more significant. Since treatments and 
error are orthogonal, both strategies may be exploited 
simultaneously. 

Another important distinction concerns prediction 
and postdiction (Gauch 1988, 1990; Gauch and Zobel 
1988). In postdiction, the selfsame data set is used to 
construct and to evaluate a model. Hence, in ANOVA an 
F-test is a postdictive test. On the other hand, in predic- 

tion one data set is used to construct a model, while 
different and independent data are used to validate the 
model. For example, an AMMI model can be fitted to 
some yield data, and its expected values can then be 
evaluated by calculating the root mean square prediction 
difference between the model and validation observations 
not used previously in modelling. This use of independent 
validation data precludes bias. 

Predictions vary in scope. Within-trial predictions 
concern the same genotypes and environments as the 
model, using data splitting or something else to partition 
the data into modelling data and validation data. Be- 
tween-trial predictions concern new genotypes or new 
environments not in the original experiment and model, 
such as inferences from past yields to future yields, or 
from experimental fields to farmer's fields. The scope of 
this paper is limited to within-trial prediction. 

The root mean square predictive difference (RMSPD) 
between an AMMI model and validation observations is 
simply the square root of the quantity of the sum of 
squared differences between AMMI estimates and valida- 
tion observations, divided by the number of validation 
observations (Gauch and Zobel 1988). RMSPD is in the 
same units as the yield measurements, and a small value 
indicates predictive success or accuracy. 

A model's predictive accuracy may be estimated as 
follows. Consider the variance of a model, ~7~, the vari- 
ance of validation observations, ~r V,2 and the variance of 
differences between the model and validation obsera- 
tions, aZv . By the variance rule, a~v = a~ + @. Now 
~2 v can be estimated empirically as the mean square 
difference between the model's estimates and validation 
observations (i.e., as the square of RMSPD). Likewise, a2 v 
is estimated empirically by the error MS. Thus, the mod- 
el's accuracy may be assessed by cr~t = a~tv- @. This 
estimate is unbiased because a2  v and a 2 are both unbi- 
ased. In other words, a~  really does assess accuracy, not 
merely precision. The square root of this quantity is in the 
original units of yield, and it estimates the root mean 
square difference between the model's estimates and the 
true means. 

Furthermore, o-~ can be equated with a number of 
effective replications, namely, the error MS divided by 
cry. When the effective replications exceed the actual 
replications supplied to a model, then the model exhibits 
the Stein effect. The model estimates are more predictive- 
ly accurate than treatment means - the model is better 
than its data. 

With the above definitions and concepts in mind, the 
theoretical significance of EM-AMMI can be appreciated 
(while practical implications are pursued later). EM-AM- 
MI allows an exact, complete decomposition of the total 
information in a yield trial into direct information and 
indirect information, as follows. 
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Data  splitting is used to partition the data into model 
data and validation data. For  each treatment, some repli- 
cates are chosen at random for A M M I  modelling, while 
the remaining replicates are reserved for validation. For  
concreteness, presume that an experiment has four repli- 
cations total, with two replicates from each treatment 
chosen at random and used for modelling, and the re- 
maining two replicates used for validation. Also assume 
that there are 385 treatments (such as would result from 
55 genotypes grown in 7 environments), so there are 770 
modelling observations and 770 validation observations. 
(Actually, only 684 validation observations were avail- 
able because of occasional missing replicates, but for the 
moment this discussion will use the ideal number of 770 
for the sake of simplicity.) 

Estimates are then constructed using three different 
data sets: (1) the direct data, (2) the indirect data, and (3) 
the total data. These three estimates are then analyzed 
and compared in terms of their predictive success, i.e., in 
terms of their accuracy in predicting the validation obser- 
vations. 

(1) The direct data estimates are trivial, using the 
treatment means model. For  each treatment, merely cal- 
culate the cell mean or treatment average from the two 
modelling observations. This mean is then used to predict 
the two validation observations for each treatment. This 
procedure is applied to all 385 treatments in turn, and 
hence to all of the 770 validation observations. The accu- 

�9 racy of these predictions can be assessed from RMSPD,  
as already discussed. Obviously, the effective replications 
can be expected to be close to two. 

(2) The indirect data estimates are possible given an 
implementation of EM-AMMI.  For  each treatment in 
turn, E M - A M M I  is given only the indirect modelling 
data, namely, the 7 7 0 - 2  = 768 other observations, and 
the model is used to impute a yield value for the missing 
cell. The result is a complete matrix of imputed yield 
values for all 385 treatments, in which not a single com- 
putation has used a single direct yield observation. The 
RMSPD for these imputed yields is then computed, and 
their accuracy is expressed in terms of equivalent replica- 
tions. 

Note that the direct and indirect predictions are 
based upon absolutely no data in common. For  any given 
treatment, the direct prediction uses only this treatment's 
2 modelling observations, whereas the indirect prediction 
uses only the other treatments' 768 modelling observa- 
tions. Yet both predictions are assessed in terms of predic- 
tive success with the same validation data, and the results 
are comparable in the common currency of effective repli- 
cations. 

(3) The total data estimates give regular A M M I  the 
total 770 modelling observations, so it has the total infor- 
mation, both direct and indirect. This model's predictive 
success (with the 770 validation observations) can also be 

measured with RMSPD, and the results compared with 
the direct (cell means) and the indirect (EM-AMMI) 
models. 

The thesis to be developed here, supported by empir- 
ical results with soybean yields, is that yield trial data 
often contain as much or more indirect information as 
direct information. Therefore, much is to be gained by 
using a reasonably realistic model to extract the indirect 
information or the total information. 

This proposal to use the entire yield trial or the total 
GER observations for each yield estimate may appear 
odd at first, seeming different from customary practice 
using only the direct R observations for each estimate. In 
fact, however, even traditional analyses make limited use 
of indirect information, although far from as vigorously 
as is proposed here. 

For  example, consider testing a given genotype's 
mean to determine whether it is significantly different 
from the  yield trial's grand mean. This test entails three 
numbers: the genotype's mean, the grand mean, and a 
pooled estimate of the error. Two of these three numbers 
involve the entire data set. Likewise, multiple compari- 
sons also involve the entire data set, at the least because 
of the estimate of the error. Furthermore, adjusted means 
from incomplete block and related designs also use all of 
the data in calculating each yield estimate. Likewise, var- 
ious spatial statistics and nearest-neighbor methods also 
use much or all of the data. 

Materials and methods 

A New York soybean yield trial was analyzed as an example. The 
data and details of the field methods are available in reports 
from the Department of Agronomy, Cornell University. Dr. 
Madison Wright kindly made available the original data on 
individual replicates. A subset was chosen to avoid missing data 
(other than an occasional missing replicate or two within a given 
treatment), so that experiments with missing data algorithms 
could withhold validation data used later to assess the predictive 
accuracy of imputed values. The seven cultivars, with maturity 
groups in parentheses, were: Evans (0), Wilkin (0), Chippewa 64 
(I), Hodgson (I), Corsoy (II), SRF 200 (II), and Wells (II). The 
55 environments were certain combinations of 10 New York sites 
and the 12 years from 1977 to /988. Yields were expressed in 
kg/ha at 13% moisture. Most treatments had four replicates, but 
occasional problems reduced this to two or three. Of the 1,540 
yield plots planted, 1,454 (or 94.4%) were harvested. However, 
for this data set there were no missing cells, i.e., no treatments 
with zero replicates. 

One algorithm for implementing EM-AMMI was consid- 
ered, but rejected. The additive part of EM-AMMI can be fitted 
despite missing data as described by Searle (1987), and then the 
multiplicative part as described by Gabriel and Zamir (1978). 
However, this approach has two problems. First, the usual AM- 
MI algorithm fits the additive parameters and then the multi- 
plicative parameters, but this approach is valid only for balanced 
data (Bradu and Gabriel 1978; Gabriel 1978). The present unbal- 
anced case requires a simultaneous solution for all model 
parameters. Second, this multiplicative part has serious conver- 
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gence problems, particularly with over 5% missing data (K.R. 
Gabriel, personal communication). Also, Freeman (1975) pre- 
sents an algorithm related to the approach chosen here. 

The algorithm chosen for implementing EM-AMMI was the 
Expectation-Maximization (EM) algorithm. "In many impor- 
tant cases," including the AMMI model, "the EM algorithm is 
remarkably simple, both conceptually and computationally" 
(Little and Rubin 1987, p. 129). In essence, EM involves "filling 
in missing values and iterating" in such a manner that the start- 
ing values do not affect the solution and hence are arbitrary and 
inconsequential, apart from some affect upon the number of 
interactions required for convergence. Little and Rubin (1987, 
p. 129) summarize the computations: "the EM algorithm formal- 
izes a relatively old ad hoc idea for handling missing data: (1) Results 
replace missing values by estimated values, (2) estimate parame- 
ters, (3) reestimate the missing values assuming the new param- 
eter estimates are correct, (4) reestimate parameters, and so forth, 
iterating until convergence." A suitable implementation of the 
EM algorithm for EM-AMMI works as follows. 

First, compute cell means for every cell with data. Then 
initialize EM-AMMFs additive parameters by computing the 
unweighted genotype means, environment means, and grand 
mean. Then initialize the interaction residuals as usual for ceils 
with data (namely, the interaction equals the cell mean minus the 
genotype mean minus the environment mean plus the grand 
mean), but impute an interaction residual of zero for missing 
cells. Now the interaction matrix has no unspecified cells, so 
perfectly ordinary PCA calculations (such as the power method, 
Acton 1970) solve for EM-AMMI's multiplicative parameters, 
continuing for as many interaction PCA axes as desired. Note 
that missing cells are initialized here by the unweighted additive 
model (since their interaction residuals are imputed by zero), but 
a still simpler initialization with the grand mean would lead to 
identical results, although requiring a somewhat larger number 
of iteractions to reach convergence. 

Next, reestimate and revise each missing cell with the current 
EM-AMMI model. Then fit EM-AMMI to these revised data, 
treating imputed values the same as actual data. Iterate this 
process until convergence, i.e., until the imputed values for miss- 
ing cells show acceptably small changes. 

Upon convergence, the EM-AMMI model "fits" the imput- 
ed cells perfectly, with a residual of zero (within numerical preci- 
sion), whereas actual data have finite residuals as usual. Hence, 
the EM algorithm fits a model to the actual data, while ignoring 
missing cells in the sense that they receive imputed values that 
fit the model perfectly. 

For regular AMMI with balanced data, successive interac- 
tion PCA axes are orthogonal. Hence each PCA axis stays the 
same regardless of how many other axes are or are not consid- 
ered in the model. The situation, however, is otherwise for EM- 
AMMI with missing cells. Each PCA axis affects the imputed 
data and hence the data set itself, thereby altering every model 
parameter from the grand mean up. Therefore the first PCA axis 
(as well as the additive parameters) for the EM-AMMI model 
with one interaction PCA axis is not the same as is the first PCA 
axis for EM-AMMI with two interaction PCA axes. Therefore, 
missing cells require that each EM-AMMI model be computed 
from scratch, without allowing the results from lower-order Total 
models to be used. Treatment 

Clearly, EM-AMMI requires more computation than AM- Genotype 
MI. However, the PCA calculations are ordinary because PCA Environment 
never sees any missing cells, since imputed values are always G x E 
inserted before calculating. If only one interaction PCA axis is IPCA 1 
required for a data matrix of a given size EM-AMMI tends to IPCA 2 
take about ten times as much computer time as AMMI. Howev- Residual 
er, this factor depends upon, and increases with, the percentage Error 
of missing cells (Little and Rubin 1987, p. 129). No problems 

with numerical instability or local minima have been noted, and 
they seem unlikely or insignificant for ordinary, nonpathological 
data sets. Nevertheless, further theoretical and empirical study of 
stability would be desirable. At any rate, when empirical results 
demonstrate that EM-AMMI achieves good predictive success 
for a given data set, then little concern is merited for that data 
set. 

These AMMI and EM-AMMI analyses were performed by 
program MATMODEL Version 2.0 (Gauch 1989). It allows each 
observation to be marked for modelling or validation, and com- 
putes statistics on predictive success. 

Table I gives the analysis of variance for the A M M I  mod- 
el, approximating these data as balanced data by com- 
puting the treatment SS as if all of the 385 treatments had 
the full 4 replicates. The unweighted grand mean is 
2605.69 kg/ha. 

Note that genotypes, environments, and interaction 
have 5.1%, 76.6%, and 18.3% of the treatment SS, re- 
spectively. Tile interaction is important,  having a SS 
which is 4.17 times as large as the genotype SS. The first 
interaction principal component  axis (IPCA 1) alone, 
which captures 69.6% of the interaction SS in only 18.2% 
of the interaction c/f, has a SS that is 2.52 times as large 
as the genotype SS. Clearly any realistic or accurate anal- 
ysis of these soybean data must consider this large inter- 
action. Incidentally, the interaction pattern in the IPCA 
I scores is clearly related to maturi ty groups for the 
genotypes and to growing season length (or warmth or 
longitude) for the environments, so it has a straightfor- 
ward agricultural interpretation. 

Note in Table 1 that the SS for axis 2 is only one-sev- 
enth that for axis l. Furthermore, all subsequent analyses 
of predictive success with these data showed IPCA 1 to 
have predictive value, but not IPCA 2 and the higher 
axes. Because axis 1 gave the best predictive success, this 
A M M I  model was used for this particular yield trial. This 
partitions the treatment SS and d f i n t o  a model with a SS 
of 829202037 in 119 df  and a residual with a SS of 
48876832 in 265 dr. Hence, this model contains 94.4% of 
the treatment SS. 

Table 1. Analysis of variance for a soybean yield trial 

Source df SS MS 

1 4 5 3  993406457 683693 
384 878078869 2286664 

6 44439308 7406551 
54 672971054 12462427 

324 160668507 495890 
59 111791675 1894774 
57 15752327 276357 

208 33124505 159252 
1 0 6 9  115327588 107884 
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Although the residual with only 5.6% is discarded, 
nevertheless the residual is important because it is pre- 
cisely this discarding that causes AMMI estimates to 
differ from mere cell means, and hence to have potential 
for greater predictive success (Gauch 1988, 1990; Gauch 
and Zobel 1988). Indeed, this residual SS of 48876832 
divided by the number of treatments (385) and by the 
number of replications (4) implies a root mean square 
difference between the AMMI model and the cell means 
model of 178.15 kg/ha, which is 6.8% of the grand mean. 
This is not negligible. Indeed, these adjustments change 
the genotype rankings within each environment consider- 
ably (Gauch and Zobel 1989). Incidentally, although this 
AMMI 1 model with a 5.6% residual is selected here on 
the basis of its predictive success, this amount of residual 
corresponds well with the 4.7% noise indicated by the 
error MS (Gauch 1990). 

The direct, indirect, and total information in the soy- 
bean data was assessed as described above. Each of the 
385 treatments provided 2 validation observations, or 
occasionally only 1 or 0 observations because of missing 
replicates, for a total of 684 validation observations. Also, 
each treatment provided exactly 2 modelling observa- 
tions, for a total of 770. For each treatment's model pre- 
dictions, the direct model used cell means based on that 
treatment's 2 modelling observations, the indirect model 
used EM-AMMI's  imputed value from the other 768 
modelling observations, and the total model used AMMI 
given the total 770 modelling observations. In order to 
obtain the most accurate estimate of error mean square 
(EMS), all 1,454 observations were used to supply 1,069 
d f ,  and the resulting root EMS estimate was 
328.4564 kg/ha. 

The root mean square difference between these 385 
imputed values and their withheld corresponding actual 
cell means (based on the two replications used for 
modelling) was 335.39 kg/ha. This value assesses the gen- 
eral postdictive accuracy of these imputed values. But 
how much can a particular, individual imputed value be 
trusted? The individual differences follow an approxi- 
mately normal distribution with this standard deviation, 
as shown in Table 2. The differences are tabulated in 
intervals of 100kg/ha so, e.g., the first interval of 
0-100 kg/ha had a count of 103 differences in this inter- 
val. Note that 203 imputed values or 53% were within 
200 kg/ha of the withheld actual data, which is within 
only 7.7% of the grand mean. The distribution is approx- 
imately normal (or more exactly a folded or half normal 
one, since absolute values of the differences are used). 

This preliminary postdictive experiment had no actu- 
ally missing cells; rather, missing cells were generated by 
temporarily withholding data, allowing subsequent em- 
pirical assessment of the imputed values. Obviously in a 
real missing-data problem, the exact error in an individu- 
al imputed value cannot be calculated as in Table 2 (or 

Table 2. Absolute difference between imputed and actual data in 
kg/ha 

Difference Count 

O- 100 103 
100- 200 100 
200- 300 59 
300- 400 51 
400- 500 22 
500- 600 22 
600- 700 10 
700- 800 5 
800- 900 2 
900-1000 4 

1000-1100 3 
1100-1200 4 

else the exact estimate would follow immediately). The 
more penetrating question is not how far the imputed 
values are from imperfect cell means based on two repli- 
cations, but rather how far the imputed values are from 
the true means, as considered next. This question requires 
a predictive rather than a postdictive outlook. 

The RMSPD values for the direct, indirect, and total 
models were 397.8451, 395.4022, and 361.0331 kg/ha, re- 
spectively. Removing the validation observations' vari- 
ance, the root mean square predictive errors between 
these three models and the true means were 224.4930, 
220.1347, and 149.8709 kg/ha, respectively. These predic- 
tive errors correspond to 2.14, 2.27, and 4.80 effective 
replications, respectively. 

The direct model actually has two modelling repli- 
ctions and, accepting some variability from statistical 
fluctuations, the predictive success estimate of 2.14 effec- 
tive replications constitutes good agreement. Remark- 
ably, the indirect model does about as well, and actually 
slightly better with 2.27 effective replications. Allowing 
for some inaccuracy due to statistical fluctuations, it suf- 
fices to conclude that the indirect model does about as 
well as the direct model. 

Hence, these data contain as much indirect EM-AM- 
MI-derived information as direct information. Of course, 
without a model, there is no such thing as indirect infor- 
mation. The concept of indirect information necessarily 
presupposes a model that relates the various yields to one 
another. 

The total model has 4.80 effective replications, for a 
statistical gain factor of 4.80/2 = 2.40. The direct effective 
replications of 2.14 and indirect of 2.27 are roughly addi- 
tive in this instance, giving 4.80. However, there is no 
reason to expect these values to always be additive (al- 
though obviously the total model is always expected to 
take the top rank). 

Another way to look at this is that given two repli- 
cates, the AMMI model supplies 2.80 free replicates; and 
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given zero replicates, the EM-AMMI model supplies 2.27 
free replicates. It is not surprising that the EM-AMMI 
model based on 768 modelling observations does almost 
as well in terms of free replications as does the AMMI 
model based on 770 modelling observations, since there 
is rather little difference in available modelling data. 

Since there are 385 treatments and the total-data 
AMMI model gives 2.80 free extra effective replications, 
AMMI analysis improves the predictive accuracy of yield 
estimates as much as would collecting field data on an 
extra 1,078 yield plots. Obviously, this statistical analysis 
offers a very cost-effective strategy for improving accura- 
cy. 

Each EM-AMMI calculation of an imputed treat- 
ment value is based on 768 indirect observations, and 
results on average in an estimate equivalent to 2.27 effec- 
tive replicates. Hence, about 768/2.27 = 338 indirect ob- 
servations are as informative as one direct observation. 
In other words, for estimating the yield of genotype g in 
environment e, one direct replicate of this particular 
treatment is as informative as are 338 indirect observa- 
tions of other treatments. 

The indirect information is, of course, much more 
dilute than is the direct information. However, from the 
perspective of each treatment, the indirect information is 
much more abundant, in fact 384 times as abundant. 
Likewise, from the perspective of a given datum, it serves 
1 time as direct information, but 384 times as indirect 
information. Therefore, although the indirect informa- 
tion is dilute, it is also very abundant, and consequently 
it is worth extracting. Indeed, for this particular case, the 
indirect information alone is slightly superior to the di- 
rect information alone. Furthermore, combining the di- 
rect and indirect information, the AMMI model based 
upon all of the data has a predictive accuracy equal to 
treatment means based upon the 770 actual modelling 
observations plus 1,078 free observations. 

This factor of 384 in this instance should be under- 
stood as an average. Clearly, the indirect observations are 
themselves variously informative, with relatively repeti- 
tious observations less influential and relatively novel 
observations more influential. Also, presumably observa- 
tions with either their genotype or environment in com- 
mon with an imputed cell are more influential on average 
than are observations with neither in common. 

The above results are aimed at quantifying the direct 
and indirect information content in yield data. However, 
these results concern data matrices with 384 filled cells 
and only I missing cell. Next, EM-AMMI results are 
reported for data matrices with substantial fractions of 
missing cells. 

As the focus now moves away from quantifying direct 
and indirect information, and toward solving missing- 
data problems with more substantial amounts of missing 
data, data splitting is organized differently. In the above 

experiments, about half of the data across all treatments 
was used for validation. In the following experiments, a 
given treatment is either used entirely for modelling, or 
else entirely for validation. 

Data matrices were generated retaining three geno- 
types from each environment for modelling, selecting at 
random one genotype from each of the three maturity 
groups, and using the remaining four genotypes for vali- 
dation. Hence, there were 165 filled cells and 220 missing 
cells, or 57.1% missing cells. This entire process was re- 
peated ten times and the results were averaged. EM-AM- 
MI models with 0 - 3  IPCA axes were computed, and axis 
1 gave the best predictive success. 

RMSPD for these imputed cells was 445.7864 kg/ha. 
Removing the validation observations' variance, the root 
mean square predictive error between the EM-AMMI 
model and the true means was 301.3998 kg/ha, or 11.6% 
of the grand mean (whereas, by comparison, an actual 
mean based on four replicates had a standard error of 
164.2285 kg/ha, or 6.3% of the grand mean). This corre- 
sponds to 1.19 effective replications. There were actually 
roughly 165 x 4 = 660 indirect observations, so about 
555 indirect observations were as informative as I direct 
observation. 

Hence, the indirect information is now more dilute 
than before. Apparently, the informativeness of a given 
indirect observation is enhanced by the presence of other 
indirect observations, particularly observations from 
otherwise unsampled or poorly sampled treatments. This 
dilution probably partly reflects diminishing returns from 
repetitious indirect observations within a givent treat- 
ment (here 4 replicates instead of only 2 as before), and 
partly reflects the diminishing predictive accuracy of an 
EM-AMMI model supplied data for only 165 treatments 
(instead of 384 of the 385 total, as before). 

Nevertheless, it is remarkable that with less than half 
of the cells filled, EM-AMMI can impute missing cells 
with an accuracy equivalent to about 1.19 effective repli- 
cations. This is a lot more than zero replicates. This 
equates to 262 free observations for these 220 missing 
cells. 

Discussion 

Consider an experiment with two replications, measuring 
a response at ten levels of some factor, for which the 
relationships between levels and responses happens to be 
nearly linear, so that linear regression is a good model. 
Now focus on the estimation of the response at level 5. 
This response has 2 direct observations, and i 8 indirect 
observations. It is quite possible that a regression line 
based upon the 18 indirect observations will give an equal 
or even greater predictive accuracy for this level's re- 
sponse than would an estimate based upon averaging the 
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2 direct observations. Of course, the linear model based 
upon the total data, all 20 observations, would do best of 
all. Now the AMMI or EM-AMMI model is a complex 
multivariate model and is therefore harder to envision 
than simple regression, but the general principles con- 
cerning direct and indirect information are the same. 

Assume for the moment that a particular yield trial's 
data fits perfectly the additive ANOVA model, leaving no 
residual, that is, no GE interaction. This scenario is well 
understood to imply that the rankings of the genotypes 
will be constant over environments, greatly simplifying 
research for breeding or for variety recommendations. 

However, this scenario also has additional but rarely 
considered implications for experimental design. Were 
the additive model truly valid, then it would suffice to 
measure yields for all genotypes in only one environment 
(presumably a convenient experimental site), and in all 
other environments to measure only one genotype (any 
genotype will do, but for simplicity presume that the 
same genotype is used throughout). 

Therefore only G + E -  1 measurements are needed 
in order to estimate all G x E yields. For example, given 
100 genotypes and 50 environments, 149 measurements 
suffice to fit the additive model and hence to estimate all 
5,000 yields. Hence, we could tolerate abundant missing 
data, in fact 4,851/5,000 or 97% missing data, and yet still 
estimate all of the 5,000 yields perfectly well, if only the 
additive model were true. 

Furthermore, assuming homogeneity of variance, 
replication can provide the usual pooled estimate of the 
error MS, and hence allow ordinary statistical inferences 
and tests. There is no need for a full replication of the 
experiment, nor even for replication of more than one 
treatment. About 20-30 replicates would provide a suffi- 
ciently accurate estimate of the error MS for most pur- 
poses. Nothing further need be mentioned here regarding 
replication. 

The problem that invalidates the above wonderfully 
efficient experimental design is, of course, interaction. In 
all yield trials, GE interaction might occur, and in most 
yield trials interaction actually does occur. It is precisely 
the existence of GE interaction that causes genotype 
rankings to vary from environment to environment, and 
causes yield estimates based upon only additive effects to 
be inaccurate and unreliable. Consequently, missing cells 
pose a substantial problem, not solved adequately by a 
merely additive model. 

This complication of substantial interaction in yield 
trials is likely to increase, if anything, in the future. For 
example, Bradley et al. (1988) review trends in corn breed- 
ing in the past (before 1980) and present (1980s), and offer 
projections into the future (1990 and beyond). They ob- 
serve trends toward fewer replications and more environ- 
ments, with researchers deliberately distributing experi- 
mental effort in order to maximize sampling over diverse 

environmental conditions. Contrasting the present with 
the past, they say that "a smaller share of the researcher's 
budget is devoted to error reduction at an individual 
location; a larger share is spent on measuring geno- 
type x environment interaction across locations." This 
choice reflects an ultimate objective of predictive success, 
that is, "maximum emphasis on precision across loca- 
tions and years." Accordingly, agronomists and breeders 
do forego, and must forego, the above simplistic scenario, 
which reduces experimental design and data analysis to 
an additive model - despite its wonderful efficiency and 
supposed tolerance of missing data. It just will not work. 

Hence, the serious difficulty when imputing missing 
yield data originates from the interaction, not the addi- 
tive effects. Of course, if even the additive effects were also 
absent, then only a grand mean would remain, requiring 
but a single observation for its estimation. This trivial 
case is practically nonexistent in yield trial research, how- 
ever, and it would indicate a very dull experiment, to say 
the least. At any rate, fitting the additive parameters re- 
quires only G + E - 1  observations, which is ordinarily 
not difficult. The challenge comes from the interaction. 

However, EM-AMMI offers estimates of missing cells 
that do take the interaction into account, as well as the 
additive effects. The merely additive model requires rank 
1 data, that is one observation for each genotype and 
environment (namely, G + E - 1 observations). The EM- 
AMMI model with one interaction PCA axis requires 
rank 2 data, that is, two observations for each genotype 
and environment (namely, 2G + 2 E -  4 observations). 
For example, given 100 genotypes and 50 environments 
as before, EM-AMMI requires 296 suitably chosen mea- 
surements in order to fit the EM-AMMI model, and 
hence to estimate all 5,000 yields. This amounts to 94% 
missing data, and yet the EM-AMMI imputed values do 
take into account both additive effects and interaction. 

A simple suitable choice of measurements for the rank 
2 model (EM-AMMI with one interaction PCA axis) 
contains data for all genotypes in two environments, and 
in all other environments data for two genotypes (the 
same two throughout). Likewise, the rank 3 model (EM- 
AMMI with two interaction PCA axes) requires all geno- 
types in three environments and three genotypes in all 
other environments, and so forth for higher ranks. 

Therefore, the EM-AMMI model can impute missing 
cells, despite considerable missing data. The real question 
is how good or how bad these imputed values are in a 
given particular instance. 

This question is not a matter for theoretical statistical 
speculation, but rather for empirical measurement. The 
procedure is simple. Consider a yield trial with G geno- 
types and E environments, but having data for only N 
treatments and, hence, missing data for (G x E) -- N cells. 
The trial may be unreplicated or replicated (partially or 
fully, and balanced or unbalanced). Then, apply EM- 
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A M M I  to these data N times, for each treatment in turn 
reserving its data for validation, computing RMSPD.  
The predictive success thus measured for matrices with 
N -  1 filled cells will be virtually equal to that for the 
original matrix with N cells (and, in fact, will be slightly 
conservative, giving a slightly larger or worse RMSPD). 
Assuming that the filled and missing cells do not differ 
systematically or significantly in estimation difficulty, the 
R M S P D  empirical value stands as a good assessment of 
predictive success for the original data matrix. The root 
mean square difference between E M - A M M I  imputed 
values and the true means is thus measured. If the exper- 
iment is replicated so that the error MS can be estimated, 
then this R M S P D  value can be equated to a number of 
effective replications. 

Surely the accuracy of E M - A M M I  imputed values 
thus measured is not merely a function of the number or 
percentage of filled cells, but also of which particular cells 
are filled. In general, given only a small fraction of a 
complete data set, it is best to spread around the observa- 
tions to cover the range of variation in genotypes and 
environments as representatively as possible (rather than 
oversampling one situation to the exclusion of other situ- 
ations). The A M M I  biplot of genotypes and environ- 
ments, showing additive effects on one axis and the first 
interaction PCA scores on the other axis, is ideal for 
selecting representative genotypes or environments 
(Kempton 1984; Zobel et al. 1988). 

An interesting prospect to be explored in future re- 
search is to analyze data that by deliberate treatment 
design have a large portion of missing cells. More specif- 
ically, yield data for hundreds of genotypes would be 
available for just a few large international breeding cen- 
ters, plus data for only a dozen or so genotypes at numer- 
ous small research centers. E M - A M M I  can then impute 
the missing cells, indicating which untested genotypes are 
likely to have done well at each of the small centers. 

Often, small centers receive hundreds of seed packets, 
but can only manage to plant perhaps i0 or 20, perhaps 
with little or no guidance in selecting this subset. Howev- 
er, they could plant just several representative genotypes 
as a basis for E M - A M M I  calculations, which would then 
provide imputed yields for hundreds of additional, 
untested genotypes. Remaining resources could then be 
focused on the most promising genotypes for the local 
environment, as indicated by rankings of E M - A M M I  
yield estimates. 

Finally, E M - A M M I  can promote remarkable experi- 
mental efficiency. The A M M I  or E M - A M M I  gain factor 
varies from one data set to another, with two to five being 
typical. However, E M - A M M I  applied to large data sets 
with mostly missing cells may produce yet greater effi- 
ciency. For  example, if a yield trial has only 20% filled 
cells, then E M - A M M I  will estimate five times as many 
cells as have actual data. Even if the statistical gain factor 

is only two or three, this additional factor of five com- 
bines to imply that each observation is about 10-15 
times as informative with the E M - A M M I  model as it 
would be with merely the cell means model. Experimen- 
tation is largely a matter of efficiency - of maximizing 
informativeness relative to effort or cost. A M M I  or EM- 
A M M I  can help agricultural researchers get more infor- 
mation out of expensive yield trial data, enabling breed- 
ing to progress more quickly, and making variety 
recommendations more reliable. 
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